NASA/TM-2010-216343 # Preliminary Assessment of Seals for Dust Mitigation of Mechanical Components for Lunar Surface Systems Irebert R. Delgado Glenn Research Center, Cleveland, Ohio Michael J. Handschuh Ohio State University, Columbus, Ohio ## NASA STI Program . . . in Profile Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) program plays a key part in helping NASA maintain this important role. The NASA STI Program operates under the auspices of the Agency Chief Information Officer. It collects, organizes, provides for archiving, and disseminates NASA's STI. The NASA STI program provides access to the NASA Aeronautics and Space Database and its public interface, the NASA Technical Reports Server, thus providing one of the largest collections of aeronautical and space science STI in the world. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which includes the following report types: - TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations. - TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis. - CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees. - CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA. - SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest. - TECHNICAL TRANSLATION. Englishlanguage translations of foreign scientific and technical material pertinent to NASA's mission. Specialized services also include creating custom thesauri, building customized databases, organizing and publishing research results. For more information about the NASA STI program, see the following: - Access the NASA STI program home page at http://www.sti.nasa.gov - E-mail your question via the Internet to *help@ sti.nasa.gov* - Fax your question to the NASA STI Help Desk at 443–757–5803 - Telephone the NASA STI Help Desk at 443–757–5802 - Write to: NASA Center for AeroSpace Information (CASI) 7115 Standard Drive Hanover, MD 21076–1320 ## NASA/TM-2010-216343 ## Preliminary Assessment of Seals for Dust Mitigation of Mechanical Components for Lunar Surface Systems Irebert R. Delgado Glenn Research Center, Cleveland, Ohio Michael J. Handschuh Ohio State University, Columbus, Ohio Prepared for the 40th Aerospace Mechanisms Symposium cosponsored by the NASA Kennedy Space Center and Lockheed Martin Space Systems Company Cocoa Beach, Florida, May 12–14, 2010 National Aeronautics and Space Administration Glenn Research Center Cleveland, Ohio 44135 ## Acknowledgments The authors wish to acknowledge Dr. Paula Dempsey, Dr. James Gaier, Dr. Ken Street, and Daniel Valco for their guidance in testing and analyses of the seals. We also acknowledge Mr. Mark Hyatt of the Exploration Technology Development Program for his support of this study. Finally we also acknowledge Ed Sechkar, Scott Panko, and Frank Lam for design, assembly, fabrication of the rotary seal test rig hardware, and programming of the vacuum motor controller. This report contains preliminary findings, subject to revision as analysis proceeds. Trade names and trademarks are used in this report for identification only. Their usage does not constitute an official endorsement, either expressed or implied, by the National Aeronautics and Space Administration. Level of Review: This material has been technically reviewed by technical management. Available from NASA Center for Aerospace Information 7115 Standard Drive Hanover, MD 21076–1320 National Technical Information Service 5301 Shawnee Road Alexandria, VA 22312 ## Preliminary Assessment of Seals for Dust Mitigation of Mechanical Components for Lunar Surface Systems Irebert R. Delgado National Aeronautics and Space Administration Glenn Research Center Cleveland, Ohio 44135 Michael J. Handschuh Ohio State University Columbus, Ohio 43210 ## **Abstract** Component tests were conducted on spring-loaded Teflon seals to determine their performance in keeping lunar simulant out of mechanical component gearbox, motor, and bearing housings. Baseline tests were run in a dry-room without simulant for 10,000 cycles to determine wear effects of the seal against either anodized aluminum or stainless steel shafts. Repeat tests were conducted using lunar simulants JSC-1A and LHT-2M. Finally, tests were conducted with and without simulant in vacuum at ambient temperature. Preliminary results indicate minimal seal and shaft wear through 10,000 cycles, and more importantly, no simulant was observed to pass through the seal-shaft interface. Future endurance tests are planned at relevant NASA Lunar Surface System architecture shaft sizes and operating conditions. ## **Introduction and Background** NASA's Constellation program currently calls for an eventual return to the moon. During the Apollo Missions astronauts sited multiple problems with lunar dust. This included accelerated visor wear, false instrumentation readings, seal failures, abrasion of materials and degradation of mechanisms. Lunar dust has been characterized to be very abrasive with sharp angular features and ranging in diameter from tens to hundreds of micrometers (Ref. 1). With NASA's current plans for an extended stay on the lunar surface, dust mitigation of gearbox, motor, and bearing housings is especially critical. One technology currently under development is a spring-loaded Teflon seal which could potentially be used for dust mitigation of mechanical housings. These types of seals have seen use as dust mitigation components in the Mars Exploration Rover (MER) Instrumentation Deployment Device (IDD) as shown in Figure 1. The IDD is responsible for the deployment, placement, and control of various measurement devices including a Mossbauer Spectrometer, Alpha Particle X-ray Spectrometer, Microscopic Imager, and Rock Abrasion Tool (Ref. 2). The MER uses canted, spring-preloaded sliding Teflon seals manufactured by Bal Seal to keep small dust particles out of the rover mechanisms (Ref. 3). Because of MER's continued successful long-term operation on the Martian surface, baseline experiments were run on this type of dust seal using lunar simulant to determine their potential performance on mitigating dust in lunar mechanisms. ## **Experimental Procedure** A series of rotating shaft tests were run against spring-loaded Teflon seals to determine their performance in preventing lunar simulant from passing through the seal-shaft interface. Baseline tests without simulant were run in ambient dry-room conditions to determine wear of the Teflon seal against both stainless steel and anodized aluminum shafts. Then, these tests were repeated using lunar simulants Figure 1.—Mars Exploration Rover (MER) Instrument Deployment Device or IDD. Figure 2.—Bal-Seal Cross-Section Main Body. JSC-1A and LHT-2M. Finally, these tests were repeated in vacuum. Shaft rotation was constant at 20 rpm per lunar rover technology demonstrator requirements. The number of cycles was limited to 10,000 to determine initial feasibility of the seals. Note that with NASA's planned extended operations on the lunar surface, the seals are expected to last for millions of cycles. Thus, endurance tests on these seals are planned for design validation. Table 1 shows the matrix of tests completed for this feasibility study. In addition, a secondary study on the initial wear rate of the seal was performed for 0.375-, 0.75-, and 1.5-in. diameter seals where the seals were weighed after 1000, 3000, and 10,000 cycles. The simulants JSC-1A and LHT-2M were synthetically manufactured such that their physical and chemical properties, as well as composition, simulate lunar regolith. JSC-1A simulates lunar regolith found in the mare, or dark regions of the lunar surface while LHT-2M simulates lunar regolith found in the highland, or light regions of the lunar surface (Ref. 4). TABLE 1.—BAL-SEAL TEST MATRIX | Seal ID | Seal
Diameter
[in.] | Atm | Shaft | Shaft ID | Simulant | |----------|---------------------------|--------------|-----------------|------------|----------| | A22, A23 | 0.375 | Dry Room | anodized Al | SA22, SA23 | none | | B7, B20 | 0.75 | Dry Room | anodized Al | SB7, B20 | none | | C17, C18 | 1.5 | Dry Room | anodized Al | SC17, SC18 | none | | B12 | 0.75 | Dry Room | stainless steel | T6 | none | | A12 | 0.375 | Dry Room | anodized Al | SA51 | JSC-1A | | B10 | 0.75 | Dry Room | anodized Al | SB10 | JSC-1A | | C6 | 1.5 | Dry Room | anodized Al | SC51 | JSC-1A | | B13 | 0.75 | Dry Room | stainless steel | T8 | JSC-1A | | A17 | 0.375 | Dry Room | anodized Al | SA55 | LHT-2M | | A18 | 0.375 | Dry Room | stainless steel | S-10 | LHT-2M | | A13 | 0.375 | 4x10^7 torr | anodized Al | SA52 | none | | B11 | 0.75 | 4x10^7 torr | anodized Al | SB51 | none | | A15 | 0.375 | 3x10^7 torr | anodized Al | SA53 | JSC-1A | | A16 | 0.375 | 4x10^-7 torr | anodized Al | SA54 | LHT-2M | ## **Test Article Description** An example of the spring-loaded Teflon seal, manufactured by Bal Seal, is shown in Figure 2. The seal is composed of a Polytetrafluoroethylene (PTFE) ring with a U-shaped cross-section. A stainless steel canted coil-spring is inserted into the U-shaped cross-section thereby energizing the seal (Ref. 5). Seal sizes of 0.375-, 0.75-, and 1.5-in. inner diameter were selected to test against either stainless steel or anodized aluminum shafts of the same diameter. ## **Test Equipment Description** The test set-up is composed of a test stand, motor, seal housing, seal, and shaft as shown in Figure 3. The assembly is arranged in a vertical orientation to allow lunar simulant to enter the seal-shaft interface through the top of the assembly. The top of the seal housing is designed with a coned interior to funnel simulant towards the seal-shaft interface. Figure 3.—Rotary seal rig test set-up and view of underside of seal within seal holder. Figure 4.—Profilometer stylus measuring anodized aluminum shaft surface and sample shaft roughness profile. ### **Procedure** Prior to testing, the seals were first cleaned with Alconox, rinsed with ethanol alcohol and dried to remove any residual oils or other residue. Pre-test photos were taken of the seals and weight and inner-diameter measurements were recorded. Pre-test photos were taken of the shafts as well, and their surface roughness profiles were recorded. Shaft roughness averaged $4.020 \pm 0.514~\mu in$. for the stainless steel shafts and $5.691 \pm 0.758~\mu in$. for the anodized aluminum shafts. A representative profilometer plot of the surface roughness measured around the shaft circumference is shown in Figure 4. Prior to installation, the seal and shaft were allowed to sit in the dry-room overnight to remove any residual moisture. The seal was then installed in the seal holder with a slight interference fit and oriented with the U-shaped channel opening of the seal facing downward. Note that simulant would be introduced at the top of the rotary seal rig. The seal was match-marked with respect to its orientation in the seal holder to determine if the seal rotated during testing. The top and bottom pieces next to the seal holder were installed using socket head cap screws, SHCS. Attention was given to ensure that no misalignment occurred when tightening the SHCS that bolt the three pieces of the seal holder together. The assembled seal holder was placed on the seal cartridge holder of the rotary seal rig, Figure 3. Depending upon the test seal size, the appropriately sized coupling adapter was used to mate the test shaft to the motor. The test shaft was carefully inserted into the top opening of the seal cartridge and gently pushed downward until seated inside the coupling adapter. After securing the shaft to the coupling, match-marks were made on the shaft and coupling adapter to determine if any slippage occurred during testing. For baseline tests with no lunar simulant added the motor was run for 10,000 cycles. For tests with either JSC-1A or LHT-2M, approximately 20 ml of simulant was added to the top of the seal cartridge prior to test start-up. In addition, a secondary platform was attached to the shaft just below the seal cartridge holder to contain any simulant that may pass through the seal-shaft interface. After testing was completed, the seal cartridge along with the shaft were removed from the rotary seal rig. Observations were made as to the amount of seal and shaft wear. Post-test analyses included shaft profilometry, seal weight loss, and microscopic examination of both seal and shaft surfaces. For tests with lunar simulant, any simulant remaining at the top of the seal cartridge was removed prior to disassembly and examination of the test seal and shaft. More importantly, observations were made to determine if simulant had passed through the seal-shaft interface. The seal cartridge was disassembled starting from the bottom of the cartridge to determine the extent to which simulant had passed through the seal-shaft interface, if any. For tests in vacuum, a vacuum-rated motor was used in place of the dry-room motor. The rotary seal rig was placed within a bell jar capable of 10⁻⁷ Torr, Figure 5. The chamber was then pumped down overnight until approximately 4×10^{-7} Torr was reached. Tests were also run at 10,000 cycles and 20 rpm. Disassembly and examination procedures of both the test seal and shaft were identical to dry-room posttest procedures. #### **Results and Discussion** For all tests run in the dry-room or in vacuum with either JSC-1A or LHT-2M, no simulant was observed to pass through the seal-shaft interface, as shown in Figures 6(a) and (b). Note that only Teflon flakes were observed on the downstream side of the seal-shaft interface. This is indicative of some seal wear as will be quantified later in the discussion. Also note that the simulant was observed to go no further than approximately half-way down the inner diameter of the Bal-Seal. Figure 5.—Bell Jar vacuum chamber containing rotary seal rig test set-up. Figure 6.—Typical seal-shaft observations for tests run with either JSC-1A or LHT-2M. a. Downstream side. Table 2 shows results of Bal-Seal tests through 10,000 cycles. In general, seal weight loss was greater for increasingly larger seal diameters due to a larger contact area and increased surface speed due to increased circumference. For example, for dry-room tests run without simulant, the average seal weight loss ranged from 0.11 to 0.33 percent for the 0.375 in. diameter seals, from 0.07 to 0.66 percent for the 0.75 in. diameter seals and from 2.63 to 3.0 percent for the 1.5 in. diameter seals. Post-test roughness profiles for dry-room test shafts run without simulant (Tests A22, A23, B7, B20, C17, C18) were inconclusive ranging from -7.34 percent (smoother surface) to 2.72 percent (rougher surface). In comparison, these same tests run with JSC-1A (Tests A12, B10, C6, A17) showed a more definitive roughness change of 15 percent (rougher surface) on average. Preliminary tests in vacuum show minimal seal weight loss through 10,000 cycles. In fact seal weight loss was identical at -0.11 percent for the 0.375 in. diameter seal tested without and with JSC-1A (Tests A13 and A15, respectively). Seal weight loss was doubled at -0.22 percent for the same sized seal tested with LHT-2M (Test A16). Although the vacuum test results are encouraging, repeat tests are necessary to validate these results. Unfortunately, a malfunction in the vacuum motor occurred after these four tests. Thus further testing was postponed. Post-test surface roughness profiles for the vacuum tested seals were again inconclusive with results ranging from -13.87 percent (smoother surface) to 6.90 percent (rougher surface). Preliminary tests of Bal-Seals against stainless steel shafts show seal weight losses comparable to the anodized aluminum shafts. However, the large change in surface roughness for shaft S-10 does not appear to be consistent with the -0.11 percent seal weight loss of Seal ID A18. In fact, this inconsistency between seal weight loss and change in shaft surface roughness is apparent for a large portion of the test results. Further analysis in data and procedures is necessary to reconcile these differences in surface roughness with seal weight loss. Supplementary testing was performed to determine cycles versus wear for three seal sizes. Results are shown in Figure 7. As expected, the larger contact surface area of the 1.5 in. seals incurred more wear through 10,000 cycles than the 0.75- or 0.375-in. seals. Further long-term testing is necessary to determine if the seal wear rate remains constant, increases, or possibly stabilizes to some final seal weight loss. Note that these tests were run at constant speed and that future tests may involve start-stop cycles, ramp-up and ramp-down in speed, etc. Finally, infrared microscopy has confirmed the presence of Teflon being transferred to the anodized aluminum shaft surface. The presence of Teflon on the rotating surface provides additional lubrication between the shaft and seal which could potentially increasing sealshaft life. Further tests are needed to assess the performance of this lubricating layer through extended operations. TABLE 2.—WEAR RESULTS FOR BAL-SEAL TESTS THROUGH 10.000 CYCLES | Seal ID Environ. | Seal Diameter | % Wt | Simulant | Shaft | Shaft ID | %∆Ra | | |------------------|---------------|-------|----------|--------|-----------|-------|--------| | | | [in.] | Change | ange | | | _ | | A22 | Dry Room | 0.375 | -0.24 | none | Anod. Al | SA22 | 2.16 | | A23 | Dry Room | 0.375 | -0.33 | none | Anod. Al | SA23 | -1.25 | | B7 | Dry Room | 0.75 | -0.61 | none | Anod. Al | SB7 | -5.20 | | B20 | Dry Room | 0.75 | -0.87 | none | Anod. Al | SB20 | -7.34 | | C17 | Dry Room | 1.5 | -3.00 | none | Anod. Al | SC17 | 0.04 | | C18 | Dry Room | 1.5 | -2.63 | none | Anod. Al | SC18 | 2.72 | | B12 | Dry Room | 0.75 | -0.13 | none | SS | T6 | 5.32 | | A12 | Dry Room | 0.375 | -0.27 | JSC-1A | Anod. Al | SA51 | 12.14 | | B10 | Dry Room | 0.75 | -0.54 | JSC-1A | Anod. Al | SB10 | 13.73 | | C6 | Dry Room | 1.5 | -1.46 | JSC-1A | Anod. Al | SC51 | 19.55 | | B13 | Dry Room | 0.75 | -0.66 | JSC-1A | SS | T8 | -0.39 | | A17 | Dry Room | 0.375 | -0.17 | LHT-2M | Anod. Al | SA55 | 14.81 | | A18 | Dry Room | 0.375 | -0.11 | LHT-2M | SS | S-10 | 30.48 | | A 4 0 | 4×404 7 to m | 0.075 | 0.44 | | ا ۸ م م م | 0.450 | 40.07 | | A13 | 4x10^-7 torr | 0.375 | -0.11 | none | Anod. Al | SA52 | -13.87 | | B11 | 4x10^7 torr | 0.75 | -0.07 | none | Anod. Al | SB51 | 5.70 | | A15 | 3x10^7 torr | 0.375 | -0.11 | JSC-1A | Anod. Al | SA53 | -8.03 | | A16 | 4x10^-7 torr | 0.375 | -0.22 | LHT-2M | Anod. Al | SA54 | 6.90 | Figure 7.—Seal percent weight loss versus cycles. ## **Conclusions and Recommendations** Seals of three different diameters were tested: 0.375-, 0.75-, and 1.5-in. Tests were conducted at 20 rpm up to 10,000 cycles in dry-room and vacuum conditions using lunar simulants JSC-1A and LHT-2M. For the tests conducted: - No simulant was observed to pass through the seal-shaft interface. - A minimal amount of wear was observed on both seal and shaft. Seal weight loss was minimal with only Teflon 'flakes' observed on the downstream side of the seal. - Shaft profilometery generally show a slight deterioration in shaft surface roughness with simulant use. Inconsistencies between surface roughness and seal weight loss require further analysis. - Infrared microscopy of the anodized aluminum shaft surface has revealed the presence of Teflon which is beneficial as a lubricant between the seal and shaft during operation. Based on these results, further tests are planned including effects of temperature and extended cycles in vacuum. Efforts are also underway to integrate the seal tests with NASA Lunar Surface Systems architectures. ## References - Gaier, J.R., "The Effects of Lunar Dust on EVA Systems During the Apollo Missions," NASA/TM— 2005-213610. - 2. Baumgartner, E.T., et al., "The Mars Exploration Rover Instrument Positioning System," Proceedings of the 2005 IEEE Aerospace Conference, Big Sky, MT, March 2005. - 3. Harrington, B.D and Voorhees, C., "The Challenges of Designing the Rocker-Bogie suspension for the Mars Exploration Rover," Proceedings of the 37th Aerospace Mechanisms Symposium, May 19–21, 2004, Johnson Space Center, Houston, TX. - 4. Sibille, L, Carpenter, P., et al., "Lunar Regolith Simulant Materials: Recommendations for Standardization, Production, and Usage," NASA/TP—2006-214605. - 5. Reciprocating Seal Catalog DM-6, Bal Seal Engineering. | data needed, and compl
burden, to Department of
Respondents should be
control number. | eting and reviewing the collect
f Defense, Washington Head | tion of information. Ser
quarters Services, Dire
by other provision of law | nd comments regarding this burden esti
ctorate for Information Operations and I | mate or any other aspect of
Reports (0704-0188), 1215 | tions, searching existing data sources, gathering and maintaining the this collection of information, including suggestions for reducing this lefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. n a collection of information if it does not display a currently valid OMB | | | |--|---|--|---|--|--|--|--| | 1. REPORT DATE
01-06-2010 | | 2. REPORT TY Technical Me | | | 3. DATES COVERED (From - To) | | | | 4. TITLE AND SUBTITLE Preliminary Assessment of Seals for Dust Mitigation of Mechanical Components for Lunar | | | | ents for Lunar | 5a. CONTRACT NUMBER | | | | Surface Systems | | | | | 5b. GRANT NUMBER | | | | | | | | | 5c. PROGRAM ELEMENT NUMBER | | | | 6. AUTHOR(S) Delgado, Irebert, R.; Handschuh, Michael, J. | | | | | 5d. PROJECT NUMBER | | | | | | | | | 5e. TASK NUMBER | | | | | | | 5f. WORK UNIT NUMBER
WBS 936374.04.05.03 | | | | | | 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) National Aeronautics and Space Administration John H. Glenn Research Center at Lewis Field Cleveland, Ohio 44135-3191 | | | | | 8. PERFORMING ORGANIZATION REPORT NUMBER E-17280 | | | | 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) National Aeronautics and Space Administration Washington, DC 20546-0001 | | | | 10. SPONSORING/MONITOR'S ACRONYM(S) NASA | | | | | | | | 11. SPONSORING/MONITORING
REPORT NUMBER
NASA/TM-2010-216343 | | | | | | Unclassified-Un
Subject Categor
Available electron | ies: 12 and 37
onically at http://glt | rs.grc.nasa.gov | pace Information, 443-757-5802 | | | | | | 13. SUPPLEMEN | TARY NOTES | | | | | | | | component gear
wear effects of t
1A and LHT-2N
minimal seal and
Future endurance | box, motor, and bea
he seal against eithe
I. Finally, tests were
d shaft wear through
e tests are planned a | aring housings.
er anodized alure
e conducted win
10,000 cycles | Baseline tests were run in
minum or stainless steel sh
th and without simulant in
, and more importantly, no | a dry-room withou
nafts. Repeat tests
vacuum at ambier
o simulant was obs | in keeping lunar simulant out of mechanical at simulant for 10,000 cycles to determine were conducted using lunar simulants JSC-at temperature. Preliminary results indicate erved to pass through the seal-shaft interface. sizes and operating conditions. | | | | 15. SUBJECT TE
Seal; Lunar; Du | - | | | | | | | | 16. SECURITY CLASSIFICATION OF: | | | 17. LIMITATION OF ABSTRACT | 18. NUMBER
OF | 19a. NAME OF RESPONSIBLE PERSON
STI Help Desk (email:help@sti.nasa.gov) | | | | a. REPORT
U | b. ABSTRACT
U | c. THIS
PAGE
U | UU | PAGES 13 | 19b. TELEPHONE NUMBER (include area code) 443-757-5802 | | | REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188